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ABSTRACT
A cylindricalmethodof lines (CMOL) has been

developed to calculate waveguide cavities with
homogeneous and inhomogeneous media. The
advantage of the CMOL is that only two out of three
space variables need to be discretized, while for the
third direction the Helmholtz equation can be
solved analytically. The CMOL is especially suit-
able for the analysis and design of cylindrical/rect-
angular cavities filled with dielectric blocks of
arbitrary shape. Results are presented for a variety
of resonator structures. Of particular interest is the
resonant frequency calculation of a dielectric rod of
varying diameter within a rectangular cavity.

INTRODUCTION
Microwave filters and multiplexer consist of

several cavities which may be of complex shape. Char-
acterization and design of these cavities is not a trivial
task [1-3]. Commercially available software either uses
approximations with sometimes insufficient accuracy or
requires computational resources which are only avail-
able on supercomputers. Resonator structures that are of
interest here are of rectangular or cylindrical shape con-
taining dielectric blocks which are of cylindrical or rect-
angular cross-section, respectively, From the numerical
point of view, cavities containing substructures whose
contours are described by a different coordinate system
than the cavity contour itself are difficult to handle.

To avoid most of the drawbacks of hitherto
known numerical techniques like the finite element
method (3D-discretization, spurious solutions), finih
difference method (3D-discretization) or mode match-
ing method (relative convergence, coupling integrals

difficult to solve when mixed coordinates are involved),
we have developed the 3D method of lines in cylindri-
cal coordinates (CMOL). In an earlier paper we have
shown that the CMOL is very flexible and computation-
ally very efficient in the anrdysis of 2D eigenvalue prob-
lems [4]. For resonator calculations the CMOL must be
extended to include an additionat space variable. The
advantage of the CMOL over other space discretization
methods is that for the 3D problem only a 2D discretiza-
tion is necessary. For the third space variable an analyti-
cal solution to the Helmholtz equation can be found.
This saves not only computer memory space but also
makes the algorithm computationally very efficient. To
demonstrate the efficiency and accuracy of the 3D
CMOL, results will be shown for rectangular and circu-
lar cavities partially filled with cylindrical dielectric
blocks.

THEORY
To describe rectangular and cylindrical cavities

with the same algorithm it is useful to express the fields
components Ez and Hz in cylindrical coordinates by
Wing the scalar potentials (&Jexp (jot) which satisfy
the Helmholtz equation in the polar coordinate system

All other fieldcomponentscan be derivedfrom

(2)

(3)

The generalized structure in Fig, 1 is then uniformly
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discretized by radial lines in the transverse plane,
expressed by

and in the longitudinal direction by

with ha being the angular spacing between the lines in (d-

irection and hz the spacing between lines in z-direction.
After the discretization we find the first order finite dif-
ference operator for the 0-direction as

ah h
- = [D] :,hi$.,h >

‘e ae –

and for the z direction

where [D]e’z represents hi-diagonal matrices. The sec-
ond order finite difference operator for the 9-direction is
found to be

h2a2ijih=[D] (- [D] ‘) $k = [P] ~h ,
3 ~

and for the z-direction

where [P] = [D](-[D]t) can be factorized by an orthogo-
nal matrix Po] as

F]= [Tol[Ll[Tel’.

Similarly, an orthogonal transformation matrix [TJ can

be found to diagonalize [Q] as

[TZ]t[Q]’[TJ = diag{~},

with diag{~k) being the eigenvalues of [Tz]. The dis-
cretized Helmholtz equation is then given as

which represents an ordinary coupled differential equa-
tion. Todecouplethis equationthe matrices~] and [Q]
must be diagonalized.This is possible by multiplying
(4) from left and right with n~ and [Te]. The trans-
formedpotentialthenreadsas

(5)

This transforms the discretized and coupled Helmholtz
equation (4) into a set of decoupled and ordinary Bessel
differential equations

In every uniform region, a solution of equ. (6) may be
written as a superposition of Bessel functions of ~k-
order

It should be noticed that when a particular subregion
contains the origin r=O, Bk must be zero since NPk is

singular. After equ. (6) is solved in every uniform
region (non-uniform region can also be solved-by using
a Stttrm-Liouville equation), the potentials @ can be
obtained by an inverse transformation in equ. (5) for&
and & respective y.

Inhomogeneous Structures

After the Helmholtz equations are solved in each
uniform region, the fields at the interfaces between the
regions are matched in order to solve the whole strttc-
ture. The tangential fields at interfaces between neigh-
boring regions are obtained from equs. (2) and (3) for&

and @h.

From the discretized potentials and (2) and (3)
we obtain the coupled field continuity equation at the
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interface between subregions. Applying also here the

orthogonal matrices [TJt and ne], the equations rue

diagonalized to give a set of uncoupled continuity equa-
tions. Finally, transforming these potentials from the
boundary of a subregion into the interface a relationship
between the tangential fields Ez, Ee and the surface cur-

rents densities JZ, JO in the interface plane can be
obtained.Transformingpotential functionsand the dis-
cretized tangentialfields back into the original domain
yields

Applying the condition of zero current in the
dielectric interfaces, the final eigenvalue equation reads
as

rl

which must be solved for the zeros of the determinant of
matrix [Z]

clef{ [Z]} = O (9)

All resonant frequencies of the cavities can be
obtained from (9). From these solutions also the field
components and cunent densities can be calculated.

Homogeneous Cavities
For homogeneous structures, the eigenvalue

problem can be greatly simplified since there is no
dielectric interface, the continuity condition required for
inhomogeneous structures need not to be considered.
Using equs. (2), (3) and (8), we can obtain the tangential
fields @eand ~ (proportional to EZand HJ on the cavity
surface contour. Introducing the boundary conditions of
$ = O ($, for TM modes and Qhfor TE modes) on the
shielding contour leads directly to the eigenvalue equa-
tion as

det{[G]) = O

NUMERICAL RESULTS
The 3D CMOL has been tested for circular (Fig.

2) and rectangular (Fig. 3) cavities and compared to ana-
lytical solutions, It was found that the convergence of
the method depends on the specific type of mode consid-
ered. For example, the analytical solution for the TMOIO
mode in Fig. 2 is already reached with only 20-25 lines,
while the TE111mode requires approximately 35 lines.

For the rectangularresonator(Fig. 3) a largernumberof
lines is neededbecauseof the approximationof the rect-
angularboundaryby radial discretizationlines.Loading
the cylindrictdcavity with a cylindricaldielectricblrxk
of varyingradius reduces the resonant frequency of the
first resonator mode (Fig. 4). The same effect is obtained
when we insert a cylindrical dielectric block into a rect-
angular cavity (Fig. 5). The interestingfact here is that
the structurecontainssubregionswhich are described by
a rectangular (rectangular cavity) and a cylindrical coor-
dinate system (dielectric rod). To discretize this 3D
structure requires approximately 50 lines in the a-b-
plane and 12-lines in the longitudinal direction (L). The
computation time per frequency on an IBM RS 6000
(530) is about 1 minute. However, since the computer
code is not optimized yet, we expect a ten times
improvement once this is done. Fig, 6 illustrates the fun-
damental mode resonant frequency for a non-uniform
dielectric rod with varying height of the partially thicker
diameter. It should be noted that the transition between
the thin rod diameter (ro) and the thick section is made
smoothly rather than abruptly. This is done to demon-
strate the flexibility of the 3D CMOL.

CONCLUSION
A 3D cylindrical method of lines has been pre-

sented for the analysis and design of microwave resona-
tors of arbitrary shape. Cylindrical and rectangular
cavities are calculated with and without partial dielectric
filling. The computational resources required are found
to be much less than for other numerical approaches,
This was demonstrated by analyzing a rectangular reso-
nator partiatly filled with a non-uniform cylindrical
dielectric rod with smoothly changing diameter.
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Fig. 13D MoL discretizationin a cylindrical coordinate system.
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Fig. 2 CMOL calculation of resonantfrequencies of TEIII
and TMOIOmodes compared to the analytical
solutions for a circular waveguide, L = R.= 2.54 cm.
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Fig. 3 CMOL calculation of resonantfrequencies of TEIOI
and TMOIOmodes compared to the analytical solutions

for a rectangularwaveguide, L = b = a/2 = 3.555 mm.
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Fig. 4 Resonant frequencies of theTMOIOmode for a
dielectric-loaded circular waveguide cavity,
L = R. = 2.54 cm, 1.01x2.54 cm, 1.02x2.54 cm,
ro = 0.254 mm -2.54-.
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Pig. 5 Resonant frequencies of theTMIIO mode for a
dielectric-loaded rcctangukmwaveguide cavity,
L = b = a/2= 3.555 cm, 1.01x3.555 cm,
1.02x3.555 cm, r.= 0.254 mm -2.54 mm.
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Fig. 6 Resonant frequencies of the fundamentalmode in a

dleltxtric loaded waveguide cavity, a=b=L=2.54 cm,
Ro= 1.54 cm, ro= Ro/2, Er=38.5.
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