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ABSTRACT

A cylindrical method of lines (CMoL) has been
developed to calculate waveguide cavities with
homogeneous and inhomogeneous media. The
advantage of the CMoL is that only two out of three
space variables need to be discretized, while for the
third direction the Helmholtz equation can be
solved analytically. The CMoL is especially suit-
able for the analysis and design of cylindrical/rect-
angular cavities filled with dielectric blocks of
arbitrary shape. Results are presented for a variety
of resonator structures. Of particular interest is the
resonant frequency calculation of a dielectric rod of
varying diameter within a rectangular cavity.

INTRODUCTION

Microwave filters and multiplexers consist of
several cavities which may be of complex shape. Char-
acterization and design of these cavities is not a trivial
task [1-3]). Commercially available software either uses
approximations with sometimes insufficient accuracy or
requires computational resources which are only avail-
able on supercomputers. Resonator structures that are of
interest here are of rectangular or cylindrical shape con-
taining dielectric blocks which are of cylindrical or rect-
angular cross-section, respectively. From the numerical
point of view, cavities containing substructures whose
contours are described by a different coordinate system
than the cavity contour itself are difficult to handle,

To avoid most of the drawbacks of hitherto
known numerical techniques like the finite element
method (3D-discretization, spurious solutions), finite
difference method (3D-discretization) or mode match-
ing method (relative convergence, coupling integrals
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difficult to solve when mixed coordinates are involved),
we have developed the 3D method of lines in cylindri-
cal coordinates (CMoL). In an earlier paper we have
shown that the CMoL is very flexible and computation-
ally very efficient in the analysis of 2D eigenvalue prob-
lems [4]. For resonator calculations the CMoL must be
extended to include an additional space variable. The
advantage of the CMoL over other space discretization
methods is that for the 3D problem only a 2D discretiza-
tion is necessary. For the third space variable an analyti-
cal solution to the Helmholtz equation can be found.
This saves not only computer memory space but also
makes the algorithm computationally very efficient. To
demonstrate the efficiency and accuracy of the 3D
CMolL, results will be shown for rectangular and circu-
lar cavities partially filled with cylindrical dielectric
blocks.

THEORY

To describe rectangular and cylindrical cavities
with the same algorithm it is useful to express the fields
components Ez and Hz in cylindrical coordinates by
using the scalar potentials ¢, pexp{jwt} which satisfy

the Helmholtz equation in the polar coordinate system
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All other field components can be derived from
1 R R
E = WVXV(%Z) -V(¢,7), (2)

= ——VXV (0,2 +V(¢,2), (3)

The generalized structure in Fig. 1 is then uniformly
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discretized by radial lines in the transverse plane,
expressed by

O = 0+ (k—1)hy (k=12,..,Np),
and in the longitudinal direction by
Op = Op + (= 1) by (i=1,2,..N),

with hg being the angular spacing between the lines in 6-
direction and h,, the spacing between lines in z-direction.

After the discretization we find the first order finite dif-
ference operator for the 8-direction as

a@e,h —

he————ae =

(D12 ,8.4.

and for the z direction
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where [D]%* represents bi-diagonal matrices. The sec-
ond order finite difference operator for the 8-direction is
found to be
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and for the z-direction
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where [P] = [D](-[D]") can be factorized by an orthogo-
nal matrix [Tg] as

[Pl= [Tgl[A[Tql".
Similarly, an orthogonal transformation matrix [T,] can
be found to diagonalize [Q] as

[T,MQIMT,] = diag {3},

with diag(B,} being the eigenvalues of [T,]. The dis-
cretized Helmholtz equation is then given as

_d_( d_@) 2. [P1§ 8101 _
rdr rdr +koq—) r2h2 h2 =0 @
(] z

which represents an ordinary coupled differential equa-
tion. To decouple this equation the matrices [P] and [Q]
must be diagonalized. This is possible by multiplying
(4) from left and right with [T,] and [Tg]. The trans-

formed potential then reads as

lo] = [12"]'8[15"] (%)

This transforms the discretized and coupled Helmholtz
equation (4) into a set of decoupled and ordinary Bessel
differential equations

2
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8, 2sin (0, /2)
X = [k§+ ;], My = ——— 7)

In every uniform region, a solution of equ. (6) may be
written as a superposition of Bessel functions of L -

order
Pu = Ay, (Xr) + BN, (Xy) (8

It should be noticed that when a particular subregion
contains the origin r=0, By must be zero since Ny, is
singular. After equ. (6) is solved in every uniform
region (non-uniform region can also be solved by using
a Sturm-Liouville equation), the potentials ¢ can be
obtained by an inverse transformation in equ. (5) for ¢,
and ¢y, respectively.

Inhomogeneous Structures

After the Helmholtz equations are solved in each
uniform region, the fields at the interfaces between the
regions are matched in order to solve the whole struc-
ture. The tangential fields at interfaces between neigh-
boring regions are obtained from equs. (2) and (3) for ¢,

and ¢y,

From the discretized potentials and (2) and (3)
we obtain the coupled field continuity equation at the
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interface between subregions. Applying also here the
orthogonal matrices [T,]' and [Tg], the equations are

diagonalized to give a set of uncoupled continuity equa-
tions. Finally, transforming these potentials from the
boundary of a subregion into the interface a relationship
between the tangential fields E,, Eg and the surface cur-

renis densities J,, Jg in the interface plane can be

obtained. Transforming potential functions and the dis-
cretized tangential fields back into the original domain

yields
JO EO

Applying the condition of zero current in the
dielectric interfaces, the final eigenvalue equation reads

as
2117 <o,
Jo

which must be solved for the zeros of the determinant of
matrix [Z]

det{[Z]} =0 (9

All resonant frequencies of the cavities can be
obtained from (9). From these solutions also the field
components and current densities can be calculated.

Homogeneous Cayities

For homogeneous structures, the eigenvalue
problem can be greatly simplified since there is no
dielectric interface, the continuity condition required for
inhomogeneous structures need not to be considered.
Using equs. (2), (3) and (8), we can obtain the tangential
fields ¢, and ¢y, (proportional to E, and H,) on the cavity
surface contour. Introducing the boundary conditions of
¢ = 0 (¢, for TM modes and ¢}, for TE modes) on the
shielding contour leads directly to the eigenvalue equa-
tion as

det{[G]} =0

NUMERICAL RESULTS

The 3D CMoL has been tested for circular (Fig.
2) and rectangular (Fig. 3) cavities and compared to ana-
iytical solutions. It was found that the convergence of
the method depends on the specific type of mode consid-
ered. For example, the analytical solution for the TMyg
mode in Fig. 2 is already reached with only 20-25 lines,
while the TE|;; mode requires approximately 35 lines.

For the rectangular resonator (Fig. 3) a larger number of
lines is needed because of the approximation of the rect-
angular boundary by radial discretization lines. Loading
the cylindrical cavity with a cylindrical dielectric block
of varying radius reduces the resonant frequency of the
first resonator mode (Fig. 4). The same effect is obtained
when we insert a cylindrical dielectric block into a rect-
angular cavity (Fig. 5). The interesting fact here is that
the structure contains subregions which are described by
a rectangular (rectangular cavity) and a cylindrical coor-
dinate system (dielectric rod). To discretize this 3D
structure requires approximately 50 lines in the a-b-
plane and 12-lines in the longitudinal direction (L). The
computation time per frequency on an IBM RS 6000
(530) is about 1 minute. However, since the computer
code is not optimized yet, we expect a ten times
improvement once this is done. Fig. 6 illustrates the fun-
damental mode resonant frequency for a non-uniform
dielectric rod with varying height of the partially thicker
diameter. It should be noted that the transition between
the thin rod diameter (rg) and the thick section is made
smoothly rather than abruptly. This is done to demon-
strate the flexibility of the 3D CMoL.

CONCLUSION

A 3D cylindrical method of lines has been pre-
sented for the analysis and design of microwave resona-
tors of arbitrary shape. Cylindrical and rectangular
cavities are calculated with and without partial dielectric
filling. The computational resources required are found
to be much less than for other numerical approaches.
This was demonstrated by analyzing a rectangular reso-
nator partially filled with a non-uniform cylindrical
dielectric rod with smoothly changing diameter.
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Fig. 1 3D MoL discretization in a cylindrical coordinate system.
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Fig. 2 CMoL calculation of resonant frequencies of TE;;
and TM;o modes compared to the analytical
solutions for a circular waveguide, L = Ry=2.54 cm.
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Fig. 3 CMoL calculation of resonant frequencies of TE;;
and TMy19 modes compared to the analytical solutions
for a rectangular waveguide, L = b = a/2 = 3.555 mm.
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Fig. 4 Resonant frequencies of the TMy;g mode for a
dielectric-loaded circular waveguide cavity,
L=Ry=2.54 cm, 1.01x2.54 cm, 1.02x2.54 c¢m,
1y = 0.254 mm ~ 2.54 mm.
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Fig. 5 Resonant frequencies of the TM;;¢ mode for a
dielectric-loaded rectangular waveguide cavity,
L=b=2/2=3.555cm, 1.01x3.555 cm,
1.02x3.555 em, 1y = 0.254 mm ~ 2.54 mm.
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Fig. 6 Resonant frequencies of the fundamental mode in a
dielectric loaded waveguide cavity, a=b=1.=2.54 cm,
Ro=1.54 cm,15=Rqy/2, £, =38.5.



